7 research outputs found

    Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates

    Get PDF
    The design of synthetic bone grafts to foster bone formation is a challenge in regenerative medicine. Understanding the interaction of bone substitutes with osteoclasts is essential, since osteoclasts not only drive a timely resorption of the biomaterial, but also trigger osteoblast activity. In this study, the adhesion and differentiation of human blood-derived osteoclast precursors (OCP) on two different micro-nanostructured biomimetic hydroxyapatite materials consisting in coarse (HA-C) and fine HA (HA-F) crystals, in comparison with sintered stoichiometric HA (sin-HA, reference material), were investigated. Osteoclasts were induced to differentiate by RANKL-containing supernatant using cell/substrate direct and indirect contact systems, and calcium (Ca++) and phosphorus (P5+) in culture medium were measured. We observed that OCP adhered to the experimental surfaces, and that osteoclast-like cells formed at a rate influenced by the micro- and nano-structure of HA, which also modulate extracellular Ca++. Qualitative differences were found between OCP on biomimetic HA-C and HA-F and their counterparts on plastic and sin-HA. On HA-C and HA-F cells shared typical features of mature osteoclasts, i.e. podosomes, multinuclearity, tartrate acid phosphatase (TRAP)-positive staining, and TRAP5b-enzyme release. However, cells were less in number compared to those on plastic or on sin-HA, and they did not express some specific osteoclast markers. In conclusion, blood-derived OCP are able to attach to biomimetic and sintered HA substrates, but their subsequent fusion and resorptive activity are hampered by surface micro-nano-structure. Indirect cultures suggest that fusion of OCP is sensitive to topography and to extracellular calcium.Preprin

    Role of interfibrillar proteoglycans in tendon elastic recoil

    Get PDF
    Force transmission and elastic recoil in tendon are related to fibre and fibrillar crimps. Tendon fibrils arrange in a network system in which forces are also laterally transferred between neighbouring fibrils through interfibrillar proteoglycans. The interfibrillar proteoglycan decorin with a dermatansulphate chain (DS) represents the 90% of tendon proteoglycans and seems to transfer forces between fibrils during tendon stretching. DS  in decorin and biglycan may also play a role in packing fibrils forming crimps. Aim of this study was to investigate whether decorin and biglycan DS affects the microstructure/function of fibrillar crimps in tendon elastic recoil. Four relaxed Achilles tendons of 8 rats (group I) were immediately immersed for 6 hours in Chondroitinase-B solution, fixed, dehydrated and prepared for SEM. Other 4 tendons (group II) were fixed in a clamp, stretched 5 - 6 % in Chondroitinase-B solution, fixed in Karnovsky solution under stretching and processed as group I. Other 4 tendons (group III) were clamped, stretched in Chondroitinase-B solution for 6 hours, removed from the clamps to allow relaxation, fixed and processed as above. Other 4 tendons (group IV) were immersed in  saline solution and mechanically disrupted to obtain isolated fibrils for TEM. Both enzymatic and mechanical removal of DS in relaxed tendons of group I and IV didn’t affect the morphology of fibre and fibrillar crimps. All collagen fibrils of group I showed crimped fibres showing particular knots or fibrillar crimps at the top of each fibre crimp: fibrils twisted leftwards first, changing their plane of running, and then sharply bent, changing their course on the new plane. Stretched tendons in Chondroitinase-B solution (group II) showed flattened crimps but regular fibrillar crimps were still present. Stretched tendons immersed in Chondroitinase-B solution, relaxed and fixed (group III) showed both regular fibre and fibrillar crimps: a fibril local leftward twisting and bending in the fibrillar crimp regions was observable like in group I. These data demonstrate that structure/function of fibrillar crimps in recoiling fibrils/fibres in tendon does not depend on DS, but seems to be related to the hierarchical alternating handedness of collagen structures

    Osteogenesis and Morphology of the Peri-Implant Bone Facing Dental Implants

    Get PDF
    This study investigated the influence of different implant surfaces on peri-implant osteogenesis and implant face morphology of peri-implant tissues during the early (2 weeks) and complete healing period (3 months). Thirty endosseous titanium implants (conic screws) with differently treated surfaces (smooth titanium = SS, titanium plasma sprayed = TPS, sand-blasted zirconium oxide = Zr-SLA) were implanted in femur and tibiae diaphyses of two mongrel sheep. Histological sections of the implants and surrounding tissues obtained by sawing and grinding techniques were observed under light microscopy (LM). The peri-implant tissues of other samples were mechanically detached from the corresponding implants to be processed for SEM observation. Two weeks after implantation, we observed osteogenesis (new bone trabeculae) around all implant surfaces only where a gap was present at the host bone-metal interface. No evident bone deposition was detectable where threads of the screws were in direct contact with the compact host bone. Distance osteogenesis predominated in SS implants, while around rough surfaces (TPS and Zr-SLA), both distance and contact osteogenesis were present. At SEM analysis 2 weeks after implantation, the implant face of SS peri-implant tissue showed few, thin, newly formed, bone trabeculae immersed in large, loose, marrow tissue with blood vessels. Around the TPS screws, the implant face of the peri-implant tissue was rather irregular because of the rougher metal surface. Zr-SLA screws showed more numerous, newly formed bone trabeculae crossing marrow spaces and also needle-like crystals in bone nodules indicating an active mineralising process. After 3 months, all the screws appeared osseointegrated, being almost completely covered by a compact, mature, newly formed bone. However, some marrow spaces rich in blood vessels and undifferentiated cells were in contact with the metal surface. By SEM analysis, the implant face of the peri-implant tissue showed different results. Around the SS screws, the compact bone with areas of different mineralisation rate appeared very smooth, while around the rougher TPS screws, the bone still showed an irregular surface corresponding to the implant macro/microroughness. Around the Zr-SLA screws, a more regular implant-bone surface and sparse, calcified marrow spaces were detectable.Results from this research suggest that 2 weeks after implantation, trabecular bone represents the calcified healing tissue, which supports the early biological fixation of the implants. The peri-implant marrow spaces, rich in undifferentiated cells and blood vasculature, observed both 2 weeks and 3 months after surgery, favour the biological turnover of both early and mature peri-implant bone. The implant surface morphology strongly influences the rate and the modality of peri-implant osteogenesis, as do the morphology and arrangement of the implant face in peri-implant bone both during early healing (after 2 weeks) and when the implant is just osseointegrated; rough surfaces, and in particular Zr-SLA, seem to better favour bone deposition on the metal surface

    Osteoclast differentiation from human blood precursors on biomimetic calcium-phosphate substrates

    No full text
    The design of synthetic bone grafts to foster bone formation is a challenge in regenerative medicine. Understanding the interaction of bone substitutes with osteoclasts is essential, since osteoclasts not only drive a timely resorption of the biomaterial, but also trigger osteoblast activity. In this study, the adhesion and differentiation of human blood-derived osteoclast precursors (OCP) on two different micro-nanostructured biomimetic hydroxyapatite materials consisting in coarse (HA-C) and fine HA (HA-F) crystals, in comparison with sintered stoichiometric HA (sin-HA, reference material), were investigated. Osteoclasts were induced to differentiate by RANKL-containing supernatant using cell/substrate direct and indirect contact systems, and calcium (Ca++) and phosphorus (P5+) in culture medium were measured. We observed that OCP adhered to the experimental surfaces, and that osteoclast-like cells formed at a rate influenced by the micro- and nano-structure of HA, which also modulate extracellular Ca++. Qualitative differences were found between OCP on biomimetic HA-C and HA-F and their counterparts on plastic and sin-HA. On HA-C and HA-F cells shared typical features of mature osteoclasts, i.e. podosomes, multinuclearity, tartrate acid phosphatase (TRAP)-positive staining, and TRAP5b-enzyme release. However, cells were less in number compared to those on plastic or on sin-HA, and they did not express some specific osteoclast markers. In conclusion, blood-derived OCP are able to attach to biomimetic and sintered HA substrates, but their subsequent fusion and resorptive activity are hampered by surface micro-nano-structure. Indirect cultures suggest that fusion of OCP is sensitive to topography and to extracellular calcium

    GJB2 mutations and degree of hearing loss: a multicenter study.

    Get PDF
    Contains fulltext : 47828.pdf (publisher's version ) (Closed access)Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes

    Drug Prescription and Delirium in Older Inpatients: Results From the Nationwide Multicenter Italian Delirium Day 2015-2016

    No full text
    Objective: This study aimed to evaluate the association between polypharmacy and delirium, the association of specific drug categories with delirium, and the differences in drug-delirium association between medical and surgical units and according to dementia diagnosis. Methods: Data were collected during 2 waves of Delirium Day, a multicenter delirium prevalence study including patients (aged 65 years or older) admitted to acute and long-term care wards in Italy (2015-2016); in this study, only patients enrolled in acute hospital wards were selected (n = 4,133). Delirium was assessed according to score on the 4 "A's" Test. Prescriptions were classified by main drug categories; polypharmacy was defined as a prescription of drugs from 5 or more classes. Results: Of 4,133 participants, 969 (23.4%) had delirium. The general prevalence of polypharmacy was higher in patients with delirium (67.6% vs 63.0%, P =.009) but varied according to clinical settings. After adjustment for confounders, polypharmacy was associated with delirium only in patients admitted to surgical units (OR = 2.9; 95% CI, 1.4-6.1). Insulin, antibiotics, antiepileptics, antipsychotics, and atypical antidepressants were associated with delirium, whereas statins and angiotensin receptor blockers exhibited an inverse association. A stronger association was seen between typical and atypical antipsychotics and delirium in subjects free from dementia compared to individuals with dementia (typical: OR = 4.31; 95% CI, 2.94-6.31 without dementia vs OR = 1.64; 95% CI, 1.19-2.26 with dementia; atypical: OR = 5.32; 95% CI, 3.44-8.22 without dementia vs OR = 1.74; 95% CI, 1.26-2.40 with dementia). The absence of antipsychotics among the prescribed drugs was inversely associated with delirium in the whole sample and in both of the hospital settings, but only in patients without dementia. Conclusions: Polypharmacy is significantly associated with delirium only in surgical units, raising the issue of the relevance of medication review in different clinical settings. Specific drug classes are associated with delirium depending on the clinical setting and dementia diagnosis, suggesting the need to further explore this relationship
    corecore